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Locomotive Analysis of a Single-Input Three-Link Snake Robot
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Abstract— When commanding gaits for snake robots and
other articulated systems, direct control of all possible joint
inputs may not always be necessary or optimal to achieve a
locomotive goal. Here we consider a three-link nonholonomic
snake robot—an already underactuated system with locomotive
capabilities in SE(2)—and reduce its input space to a single
actuated joint, replacing the other joint’s motor with a passive
mass-spring-damper system. We show that the modified system
can operate dynamically in addition to kinematically, and that
it is possible to find gaits that produces locomotion similar to a
fully actuated system. In particular, we describe the emergence
of a new type of gait that incorporates the system’s singular
configurations to produce high locomotive efficiency without
incurring unbounded constraint forces.

I. INTRODUCTION

Recent work in snake robotics has produced powerful tools
to help with the design of gaits for desired locomotion.
Oftentimes the robots’ basic gaits, or segments of them,
mimic “natural” behaviors in their biological counterparts
or follow closely the passive dynamics that minimize the
energy expenditure of the system. In this work, this led to
the question, “Can such ‘natural’ gaits emerge on their own
if we do not command the full input?”

Traditionally, simple slithering-like motions that propel
a snake robot forward can be synthesized using backbone
curves that constrain the large number of joints in the
system, but in a simple and intuitive way that maintains
full control over all degrees of freedom (DOFs) [1], [2].
However, because the number of DOFs is large, it is possible
that some joints need not be actively controlled, and that the
same or similar overall motions could be achieved by leaving
some joints compliant. Matsuno and Mogi [3] describe how
to make a wheeled snake robot “redundancy controllable”
by selectively using wheel-free links, allowing for the con-
trol of multiple objectives, including inertial position and
orientation as well as internal shape.

In this paper, we take one of the simplest examples of a
snake robot and consider a three-link robot whose motion
is governed by a nonholonomic constraint on each link
(Fig. 1). Although this system appears to be less complex
compared to a n-link snake, it actually has received attention
from researchers treating it as a kinematic system [4]—
[6], so named because its three constraints eliminate the
need to consider second-order dynamics when modeling its
locomotion. The mathematical structure of this system also
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Fig. 1: A three-link nonholonomic robot. The coordinates
(z,y,0) describe the inertial position and orientation of the
first link, which can also be described in a body-attached
frame with velocities (£;,&,,&p). The joint angles (a1, a2)
describe the relative configurations of the links thereafter.

lends itself to visualization and design tools [7]. Here we
modify the system by making one of its two input joints
compliant rather than actuated. We show how this system
is still able to locomote using gaits not too different from
those of the fully actuated system, and how one may consider
system or gait design to achieve desired motion.

We will also be able to exploit the modified system’s sin-
gular configurations, which arise when the links are aligned
such that the three constraints are no longer independent
of each other. For a general system, singular states may
entail the loss of a controlled DOF, so motion plans often
actively avoid the straight or arc configurations in snake
robots [8], [9]. A full analysis of the conditions for singular
configurations in a n-link robot was done by Tanaka and
Tanaka [10]. In preceding work on the three-link robot, we
showed how to appropriately model the transitions between
normal and singular system operation under a hybrid model,
and we described how this may be achieved in a physical
system with external forcing, as well as its novel locomotive
capabilities [11]. Here we will show that attaching a spring to
the passive joint can replicate this behavior without relying
on external forces, allowing for dynamic motions.

The rest of this paper is organized as follows. Section II in-
troduces the standard kinematic model of the nonholonomic
snake system, how the system structure leads to visualization
and design tools, and finally the dynamics of making one
of the joints compliant rather than actuated. In Section III
we first consider the simpler case of having a locked joint
and allowing the system to maneuver itself into the singular
configuration without having to rely on external forces. We
then turn to full periodic input gaits in Section IV that give
rise to locomotion in both familiar and novel ways, the
latter also utilizing the system’s singularities. We conclude
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in Section V with future directions and an example of how
some of the preceding observations may be combined.

II. MECHANICAL MODEL OF THE SNAKE
A. Kinematics

As shown in Fig. 1, the three-link robot consists of three
rigid links, each of length R, which can rotate relative to
one another. Its configuration is defined by ¢ € Q = G x M,
where g = (z,9,0)7 € G = SE(2) specifies the position
and orientation of the first link in an inertial frame; we
measure a link’s position at the center of the link. The
joint angles 7 = (a1, 0)”T € M specify the links’ relative
orientation as shown. We can view () as a principal fiber
bundle, in which trajectories in the shape or base space M
lift to trajectories in the group G [12].

The wheels at the centers of the links provide a set of
nonholonomic constraints that restrict the system’s motion.
Each of the constraints can be written in the form

—&;sinf; + y; cos; =0, (1)

where (&;,9;) is the velocity and 6; is the orientation of the
ith link. These quantities can be found via the system’s ge-
ometry and written in terms of the configuration coordinates
and velocities. We note that the constraints are symmetric
with respect to the group in that they do not explicitly depend
on where the system is positioned or how it is oriented
in space. We can ultimately rewrite the constraints into a
reduced Pfaffian form [6] as

we (T)f + wy (T)T =0, 2

where we € R¥3 and w, € R3*2. The variables ¢ =
(£2,&y,&0)T give us the body velocity of the system, as
shown in Fig. 1. In SE(2), the mapping that takes body
velocities to inertial velocities is given by ¢ = T, L,&, where

cosf —sinf 0
TeLy= | sinf cosf 0. 3)
0 0 1

Since the number of independent constraints is equal to
the dimension of the group, these equations are sufficient
to derive a kinematic connection for the system [6]. In
other words, the constraint equations fully describe the first-
order dynamics of the group variables in terms of the shape
variables only. Thus, Eq. (2) can be rearranged to show this
explicitly as the kinematic reconstruction equation:

1 L(cosay +cos(a; —az)) E(1+cosay)
E=—— 0 0 3
sin oy + sin(a; — ag) sin a;

A(r)

4)
where D = sin oy +sin(ay —ag) —sin as. A(r) is called the
local connection form, a mapping that depends only on the
shape variables, in this case o1 and 5. Note that this quan-
tity is not well defined when a1 = a9, which corresponds
to the singular configuration of the system. Effectively, the
rank of w¢ drops to 2 as one of the nonholonomic constraints
becomes redundant given the other two at this point.
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Fig. 2: Visualization of the connection curvature functions.
Gaits can be represented as closed curves on the surfaces,
while the enclosed volume (signed area) approximates dis-
placement in each direction.

B. Joint Space Visualization

In the literature, the kinematic model (4) has yielded rich
insights into the three-link system’s locomotion. According
to Hatton and Choset [7], Eq. (4) can be integrated over a
gait ~y to obtain a measure of displacement corresponding to
the body frame directions. In the world frame, this measure
provides the exact rotational displacement, i.e., 0 = &g, and
an approximation of the translational component, particularly
for gaits of small magnitude.

By viewing each row of A(r) as a connection vector
field and the gait -y as a closed trajectory on each of these
fields, one can apply a change of variables along with Stokes’
theorem to obtain

/ A(r(8))i(t) dt = L A(r)dr = / /F curl A(r)dr. (5)

Here, the integrand of the rightmost expression is the curva-
ture of the local connection [6], [7], while I" is the signed
area of the portion of curl A(r) enclosed by ~.

The connection curvature functions allow us to easily
visualize the effects of a gait over a cycle. Fig. 2 shows
the x and 6 curvature functions plotted as 2D surfaces, with
the domain being various joint angle configurations and the
surface height corresponding to the magnitude of curl A ()
(the y component is null everywhere).! The z curvature
function is positive everywhere, meaning that any closed

'We follow [7] in plotting a scaled arctangent of the connection curvature
function magnitudes in order to finitely show the singular portions. For the
value z, we plot %arctan(km) instead, where k is positive.
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loop in joint space will lead to net displacement along the
&, direction, although the greatest volume occurs alongside
the a; = ay singularity line. On the other hand, the 6
function is symmetric about this line and anti-symmetric
about oy = —as.

Since previous work traditionally assumed direct control
over the joint angles or joint velocities, one can use these
surfaces as a visual tool for gait design, parameterizing o
and as (and their time derivatives) to achieve a desired
motion. For example, one gait that moves the snake forward
with minimal body rotation is represented by the black loop
shown on the left side of the plots. Such a gait encloses a
positive net volume on the x curvature function and zero net
volume on the 6 one, since it is symmetric about a; = —as.

C. PFassive Joint Dynamics

We presently consider the case in which we assume control
of only one of the joints, say ay, and leave the other to be
compliant, following the dynamics of a mass-spring-damper
model. In doing so, we posit that full gaits can still merge
from the natural dynamics of the modified system, allowing
it to locomote efficiently with only one input. The modified
system remains kinematic, as the nonholonomic constraints
remain unchanged.

We use the Lagrangian formulation to derive the dynamics
of the passive joint. As with the constraints, the energies
are group-symmetric and do not depend on the position and
orientation of the system. Denoting the global position of as
as (xp,yp), we have a kinetic energy

3
T(r,&,7) %Z(mx +yz)+J92)+;mp(x +97)

=1
(6)
and a potential energy
1 2

U(r) = Skp0d, )

Here the quantities m; and J; are the masses and inertias
of the respective links; m,, and k, are the mass and spring
constant of the passive joint. We can then define a reduced
Lagrangian [(r,&,7) = T — U, followed by a set of reduced
Euler-Lagrange equations in the form

d o\ . o
o (8&) = (we); A, ®)

d(ay_ o
t 6042 6042

The object (wg); refers to the ith column of we in Eq. (2)
(and similarly for w,.), while the Lagrange multipliers A € R?
represent the constraint forces. The constant d,, is a damping
coefficient and the term d,c» is appended to the ao Euler-
Lagrange equation to capture the damping model component.

= (W3 N = dya. )

D. Singular Configuration Dynamics

While the relationship between the shape variables and
the fiber variables remains kinematic despite the lack of
control over one of the joints, this no longer remains true
if the system is locked at a singular configuration in which
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Fig. 3: The joint angle, body velocity, and constraint force
trajectories for a system moving into the singular configura-
tion oy = ag = 0.1.

a1 = «o. Starting the robot in a singular configuration with
initial momentum will allow it to continue moving due to
momentum conservation, even though the inputs é&;; = &g =
0. If we consider a hybrid model encompassing both the
original kinematic and singular models as is done in [11],
then this momentum can be defined so that the system’s body
velocities ¢ vary smoothly between the two models.

The full details of the hybrid and transition modeling
may be found in [11]. Consistency of the remaining two
constraints requires that, in addition to &, = 0, we have

g = remale, (10)
sSin o«

where o = a1 = aw. This effectively describes a constant
curvature trajectory on the plane. For o near 0, the robot
travels along a path of small curvature, whereas the opposite
true for o near g If a = 0, then all three links are aligned
in the same direction. So the system would only be able to
move along the &, axis, while &y is necessarily 0.

I1I. LOCKED-JOINT LOCOMOTION

In our earlier work [11], we had noted that although a
motion planner utilizing the singular configuration provides a
novel way of locomotion, it was not intuitive how one would
maneuver into this state in the first place. With two actuated
joints, one option would be to directly command both joints
to achieve a common angle «, but a problem arises in
which the Lagrange constraint forces become unbounded.
Alternatively, one can use an asymptotic command in which
&1 and c&o both go to 0 as the configuration is approached,
but this would lead to trivial behavior in which ¢ =
We thus considered external forcing, for example in the
form of gravity, alongside locking the actuated joint, which
would “push” the system into the singular configuration
while simultaneously giving it nonzero momentum to start
moving. Here we will show that having a system with
a passive spring-loaded joint can lead to the same result
without relying on the external environment.
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Fig. 4: The phase portrait for the cy dynamical system with

«y constant. There is a stable fixed point at the origin and
an unstable one at the singular configuration ay = «;.

The spring restoring force plays the same effective role
as the external force in “pushing” the compliant joint to-
ward «, the locked value of «;, while the rigidity of the
nonholonomic constraint force prevents it from overshooting
that value. If the system starts from rest, this can be achieved
as long as |az2(0)| > |ai|. Fig. 3 shows the results of a
simulation starting from rest with all parameters set to a
value of 1. Because a3(0) = 0.3, its spring starts restoring
it toward O, but it reaches av = 0.1 and is kept there by the
nonzero but finite constraint forces acting on all three links.
At the same time, the system starts moving and continues to
do so with nonzero & after g effectively reaches 0.1.

A phase analysis of ay yields a more general response
to different initial conditions, as well as the stability of the
singular configuration. From the reduced form of Egs. (8), it
is possible to analytically solve for the Lagrange multipliers
and substitute them into Eq. (9). In addition, because Eq. (4)
gives us the body velocities £ in terms of the joint angles
r and velocities 7, we can substitute them out to obtain a
second-order differential equation in the shape variables, i.e.,

Y

For a constant oy, Eq. (11) becomes an autonomous
dynamical system. The analytical expression for f is rather
tedious to insert into this paper, but we can examine an exam-
ple phase portrait of this system (Fig. 4). Again, the system
parameters have all been set to 1, and ai; = 0.3. First we note
the existence of a stable fixed point at (0,0), corresponding
to the minimum spring potential configuration.

There is also a fixed point at (a,0) corresponding to
the singular configuration, which confirms the converging
behavior observed in the simulation. Unlike the origin, it
appears to be a saddle point with four distinct regions around
it. Flows starting in the regions (a2 > «a,& < 0) and
(e < «, s > 0) converge toward it, while those in the
other regions diverge away. The physical interpretation of

d2 - f(QZaO.ZQaOélvdl,dl)'

the first convergence region is due to the balance between
the spring and constraint forces on as.

The mechanism behind the second region is due to the
interplay between the constraint forces and the nonholonomic
constraints themselves. As «s increases toward «, constraint
forces become large enough to slow co toward 0. At the
same time, near cv; = o it can be shown that the constraints
require & &~ —de. Since & = 0, &2 will also tend toward
0 as ay approaches oy, allowing it to stay there.

The divergence regions can be understood more easily.
In both of them, the system starts with an initial velocity
headed away from the singular configuration and is naturally
pushed away by the nonholonomic constraint forces, with
the latter effect being greater the closer oy is to a. This
divergence is possible as long as the system has some
nonzero velocity, despite the presence of damping and lack
of active input. Eventually, these constraint forces become
small enough that the restoring spring force takes over and
pulls the joint back toward either O or «. This lack of stability
may be troublesome for a physical system, but this could
be alleviated by implementations such as a compliant motor
system that can be locked when desired.

Proposition 1: Analytically, we can obtain these conclu-
sions with the following Lyapunov function for Eq. (11):

V(QQ, 0[2) = %(042 - a)2 + %a%,
V(OéQ, ag) = (O[Q + o — Oé)dLQ. (12)

From the condition that V' < 0 for the stable regions near
ag = a, one can derive a relationship among the parameters,
in particular the spring and damping coefficients %k, and dp,.
In the region as < a, this gives the minimum velocity
that &o must take in order for the joint to converge toward
the singular configuration before being pulled back to the
spring’s resting state or damped out by friction.

IV. SINGLE-INPUT OSCILLATORY GAITS

Given what we know about the system’s behavior with
a constant oy, we now consider continuously commanding
oy with a periodic input «aq(t) = Ap + Acos(wt + ¢). We
discuss two distinct simulation results that illustrate some of
the possible behaviors that emerge. For both cases we set all
masses and inertias, including m,,, to 1.

A. Non-Singular Configuration Gaits

In the first scenario, we command the joint trajectory
a1(t) = 0.5 + 0.3cost. Assigning this joint some offset
away from O is standard in the gaits in [6], [7], since this
allows for a sufficient range of motion for both joints in hand-
designed gaits without worrying about hitting the singular
configuration. The initial value for ay is —0.4 and the passive
joint parameters are k, = 1, d, = 5.

The values chosen above illustrate the mechanism behind
resultant gaits like that in Fig. 5. In the steady state, g tends
to oscillate about the origin due to the spring restoring force,
but not symmetrically. Because d,, is much higher than k,,
the combination of dissipation and the increasing constraint
forces as a1 and ag approach each other is large enough to
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Fig. 5: Joint and workspace trajectories for a gait that does
not cross the singular configurations.
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Fig. 6: Joint and workspace trajectories for a gait that
periodically crosses the singular configuration.

stop a before « reaches its minimum. At the maximum
of aw, the spring and constraint forces push as back toward
the origin, thus giving rise to a periodic gait.

More importantly, this gait leads to nontrivial locomotion
in the workspace, and is similar to hand-designed gaits in
that it can be represented on the corresponding connection
curvature functions, shown as the dashed potato-shaped loop
in Fig. 7. From a design perspective, the relative impedance
of the passive joint due to the mass, spring, and damping
values determine a tradeoff between gait amplitudes and the
location in the joint space. A higher damping value allows
for ; and a to oscillate nearer each other, placing the
gait closer to the high-volume, singular configurations to
achieve greater displacement. However, this will also reduce
the amplitude of ai, leading to a narrow elliptical loop that
encloses less area than a more circular, equal-amplitude gait
would. We expect to further explore the design principles
behind these models in future work.

B. Singular Configuration Gaits

Opposite to the case described previously, we now con-
sider system parameters where d), is smaller relative to &, or
initial conditions where « starts off much closer to the o
trajectory. An example of both of these changes is shown
in Fig. 6, where a1(t) = 0.3cost, and k, = d, = 2.
The trajectory has the characteristics of a gait observed by
Matsuno and Mogi [3] for redundancy controllable snake
robots, in which crawling snakes naturally operated around
the singular configuration; the authors sought to avoid this
configuration due to potential loss of control. Here we will
utilize it using phase analysis of the now time-dependent
autonomous system. Plugging in «; and its derivatives into
Eq. (11), f will still depend on ¢, but we can sweep over
a complete gait cycle and observe that the high-level phase

0.5

0.0

ap

-0.5

-1.0L,
-1.0 -05 0.0 0.5 1.0

[o4]
Fig. 7: Two gaits shown on a density plot of the x connection
curvature function. The dashed brown gait does not cross a
singularity configuration and encloses less area than the solid
red, resulting in a lower locomotive displacement.

portrait structure remains unchanged. A “snapshot” at ¢ =
19.3, at which oy = a = 0.27, is shown in Fig. 8.

Because o lags o in the steady state, the passive joint
is in an asymptotically stable region of the phase space
at almost all times, allowing it to track «; (again, this
observation is made not with the single phase portrait of
Fig. 8, but rather with a sampling of portraits over a sweep
of a gait cycle). Note that a; and ao are allowed to
periodically cross each other. This is captured in the phase
portrait by the existence of a clockwise flow line around
the current singularity position at oy = 0.27. Such a gait
would have been very unintuitive to design even for a fully
actuated system, as this single flow is the only trajectory
that passes through without the constraint forces becoming
unbounded. That the constraint forces become exceedingly
large is characterized by the abrupt change in flow direction
everywhere else along as = 0.27.

The fact that the resultant gait tracks so close to the
singular configuration is desirable from a locomotive effi-
ciency standpoint. We overlay this gait on the x connection
curvature function as the red loop in Fig. 7 and see that
much of it encircles a high volume region (lightly colored as
opposed to dark). This corresponds to a much larger forward
displacement compared to the previous emergent gait or any
hand-designed gaits that are restricted to half of the joint
space to avoid the singularities. Directly comparing Figs. 5
and 6 shows that for an input of equal amplitude in o, the
latter is able to locomote about four times more in absolute
displacement. Furthermore, because this particular gait is
symmetric about the a; = —ag axis, it encloses minimal
net volume on the 6 connection curvature function (Fig. 2).
This then leads to minimal net rotation over the course of
the gait, allowing the system to effectively move in a straight
line as shown in Fig. 6. This could be useful if movement
only in a certain direction is desired, for example.

One can potentially combine the different gaits explored
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Fig. 8: The phase portrait for the as dynamical system with
a1 = 0.3cost and t = 19.3. Unlike before, a flow line exists
around the singular configuration as = .

to order to produce more flexible and complex trajectories.
An example motion plan is shown in Fig. 9, where we stitch
together two singularity-crossing gaits with a locked joint
maneuver between them. The first and third parts of the
motion plan effectively allow the system to move forward,
as we recall that net reorientation is zero or minimal with a
gait symmetric about arg = 0. The intermediate part pins the
system on a trajectory with constant known curvature, so this
can be used to achieve a rotational transition when desired.
By combining individual trajectories like these in different
ways, the robot can travel between any two neighborhoods
in SE(2), a significant result as we are only controlling one
degree of freedom at any given time.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the idea of reducing
the locomotive effort necessary to achieve certain gaits
or motions by allowing the system’s passive dynamics to
generate them instead. We presented an example in which
this is viable in the form of a single-input, three-link snake
robot and observed that a diverse set of gaits can still arise
despite the loss of a degree of freedom. In particular, not
only is the system still able to locomote, but it has also been
shown to cross the singularity configurations, which lead to
new rolling motions as well as high locomotive efficiency.

Looking forward, the nuances of the nonlinear system
governing the evolution of the passive joint offer a way
to design gaits for the actuated joint, just as with the fully
actuated system in previous work. In particular, how do the
relationships between the joint impedance parameters and
the commanded gait determine whether a gait will encircle
the singular configuration or not? More rigorous stability
analyses, for both the locked joint and oscillatory input cases,
can also yield information about the types of gaits that are
useful over long runs. Finally, we would like to extend this
work to snake robots with n > 3 links, where the actuation

— a[t]
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Yy
3.0
2.5
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1.5
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Fig. 9: A trajectory that combines the forward gait with the
dynamic rolling gait for reorientation, potentially allowing
the system to cover SE(2) with only one controlled input.

cost savings could be impactful.

REFERENCES

[1] G. S. Chirikjian and J. W. Burdick, “A modal approach to hyper-
redundant manipulator kinematics,” IEEE Transactions on Robotics
and Automation, vol. 10, no. 3, pp. 343-354, Jun 1994.

[2] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz,
and H. Choset, “Parameterized and scripted gaits for modular snake
robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131-1158, 2009.

[3] F. Matsuno and K. Mogi, “Redundancy controllable system and control
of snake robots based on kinematic model,” in Decision and Control,
2000. Proceedings of the 39th IEEE Conference on, vol. 5, 2000, pp.
4791-4796 vol.5.

[4] J. Ostrowski and J. Burdick, “Gait kinematics for a serpentine robot,”
in Robotics and Automation, 1996. Proceedings., 1996 IEEE Interna-
tional Conference on, vol. 2, Apr 1996, pp. 1294-1299 vol.2.

[5] J. Ostrowski, “Computing reduced equations for robotic systems
with constraints and symmetries,” Robotics and Automation, IEEE
Transactions on, vol. 15, no. 1, pp. 111-123, Feb 1999.

[6] E. A. Shammas, H. Choset, and A. A. Rizzi, “Geometric motion plan-
ning analysis for two classes of underactuated mechanical systems,”
The International Journal of Robotics Research, vol. 26, no. 10, pp.
1043-1073, 2007.

[71 R. L. Hatton and H. Choset, “Geometric motion planning: The local
connection, stokes theorem, and the importance of coordinate choice,”
The International Journal of Robotics Research, vol. 30, no. 8, pp.
988-1014, 2011.

[8] C. Ye, S. Ma, B. Li, and Y. Wang, “Locomotion control of a novel
snake-like robot,” in Intelligent Robots and Systems, 2004. (IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on,
vol. 1, Sept 2004, pp. 925-930 vol.1.

[9] F. Matsuno and H. Sato, “Trajectory tracking control of snake robots
based on dynamic model,” in Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on,
April 2005, pp. 3029-3034.

[10] M. Tanaka and K. Tanaka, “Singularity analysis of a snake robot
and an articulated mobile robot with unconstrained links,” IEEE
Transactions on Control Systems Technology, vol. PP, no. 99, pp. 1-12,
2016.

[11] T. Dear, S. D. Kelly, M. Travers, and H. Choset, “The three-link
nonholonomic snake as a hybrid kinodynamic system,” in American
Control Conference(ACC), 2016, To appear.

[12] S. D. Kelly and R. M. Murray, “Geometric phases and robotic
locomotion,” Journal of Robotic Systems, vol. 12, no. 6, pp. 417431,
1995.

7547



